QAMAR CD18N

Linear Low Density Polyethylene SPDC Ltd.

Technical Data

Product Description

QAMAR CD18N is a Linear Low Density Polyethylene material. It is available in Africa & Middle East, Asia Pacific, Europe, or North America for cast film. Primary attribute of QAMAR CD18N: High Flow.

Typical application of QAMAR CD18N: Film

General			
Material Status	 Commercial: Active 		
Literature 1	 Technical Datasheet (Eng 	lish)	
Availability	 Africa & Middle East Asia Pacific	EuropeNorth America	
Features	 Additive Free 	 High Flow 	
Uses	 Cast Film 		
Processing Method	 Cast Film 		

Physical	Nominal Value (English)	Nominal Value (SI)	Test Method
Density	0.918 g/cm ³	0.918 g/cm ³	ASTM D4883
Melt Mass-Flow Rate (MFR) (190°C/2.16 kg)	2.8 g/10 min	2.8 g/10 min	ISO 1872-2
Mechanical	Nominal Value (English)	Nominal Value (SI)	Test Method
Tensile Stress (Yield)	1310 psi	9.00 MPa	ISO 1872-2
Tensile Strain (Break)	> 430 %	> 430 %	ISO 1872-2
Flexural Modulus	29000 psi	200 MPa	ISO 1872-2
Films	Nominal Value (English)	Nominal Value (SI)	Test Method
Film Thickness - Tested	1.2 mil	30 μm	
Tensile Modulus			ISO 527-3
MD : 1.2 mil (30 μm)	27600 psi	190 MPa	
TD : 1.2 mil (30 µm)	30500 psi	210 MPa	
Tensile Stress			ISO 527-3
MD : Break, 1.2 mil (30 μm)	5080 psi	35.0 MPa	
TD : Break, 1.2 mil (30 µm)	4350 psi	30.0 MPa	
Tensile Elongation			ISO 527-3
MD : Break, 1.2 mil (30 μm)	600 %	600 %	
TD : Break, 1.2 mil (30 µm)	900 %	900 %	
Dart Drop Impact (1.2 mil (30 µm))	100 g	100 g	ISO 7765-1
Elmendorf Tear Strength		7	ISO 6383-2
MD : 1.2 mil (30 μm)	6.7 lbf	30 N	
TD : 1.2 mil (30 µm)	27 lbf	120 N	
Hardness	Nominal Value (English)	Nominal Value (SI)	Test Method
Shore Hardness (Shore D)	54	54	ISO 868
Thermal	Nominal Value (English)	Nominal Value (SI)	Test Method
Brittleness Temperature	<-94.0 °F	< -70.0 °C	ISO 974
Vicat Softening Temperature	210 °F	99.0 °C	ISO 306
Melting Temperature	252 °F	122 °C	ISO 11357-3
Optical	Nominal Value (English)	Nominal Value (SI)	Test Method
Haze (1.18 mil (30.0 μm))	12 %	12 %	ISO 14782

Extrusion Notes

Resin Temperature: 180°C Blow up ratio: 2.0 Extruder: 40mm, L/D=24 Die Diameter: 75mm

Form No. TDS-112609-en
Document Created: Sunday, March 13, 2016
Added to Prospector: March 2008
Last Updated: 1/21/2015

QAMAR CD18N

Linear Low Density Polyethylene SPDC Ltd.

Notes

¹ These links provide you with access to supplier literature. We work hard to keep them up to date; however you may find the most current literature from the supplier.

² Typical properties: these are not to be construed as specifications.

on presented on this datasheet was acquired by UI. Prospector from the producer of the material. UI. Prospector makes substantial ire the accuracy of this data. However, UI. Prospector assumes no responsibility for the data values and strongly encourages that tenial selection, data points are validated with the material supplier.

Form No. TDS-112609-en

Document Created: Sunday, March 13, 2016
Added to Prospector: March 2008
Last Updated: 1/21/2015